This trial is active, not recruiting.

Conditions down syndrome, obstructive sleep apnea
Sponsor Children's Hospital Medical Center, Cincinnati
Collaborator National Heart, Lung, and Blood Institute (NHLBI)
Start date March 2011
End date November 2016
Trial size 57 participants
Trial identifier NCT01902407, CIN001-Dymosa, R01HL105206-01


The purpose of this research study is to develop a way of predicting with computers how surgery on the airway will affect night time breathing called Obstructive Sleep Apnea (OSA) in children with Down Syndrome.

Subjects will be in the research study for approximately a year. Participation in this research study will involves a screening visit and 1 overnight sleep study (PSG) for research purposes that will be done before airway surgery. During the research sleep study, a measurement will be taken for airway resistance. A research measurement for airway resistance will also be done during the clinical sleep MRI. The airway resistance measurement will take about 10 minutes and is done during sleep. The airway resistance measurement is called critical closing pressure (Pcrit).

United States No locations recruiting
Other Countries No locations recruiting

Study Design

Observational model cohort
Time perspective prospective
Children and young adults with Down Syndrome who also have Obstructive Sleep Apnea

Primary Outcomes

Measurement of critical closing pressure of the airway-Sleep MRI
time frame: Day 1

Eligibility Criteria

Male or female participants from 1 year up to 21 years old.

Inclusion Criteria: - Down Syndrome - Ages 1-24 years - Post T&A of 3 months or greater that can also include lingual tonsillectomy. - OSA with Obstructive Index (OI) of 4 or higher and undergoing work up for regrowth of adenoid tissue, enlarged lingual tonsils, macroglossia, and/or glossoptosis Exclusion Criteria: - Those patients whose body weight (>350 pounds) or circumference is greater than what can be safely accommodated by the MRI scanner - Patients with pacemakers or other non-MRI compatible devices - Patients with extensive dental hardware that causes MR artifact obscuring visualization of the area of interest. - Body Mass Index (BMI) > 40

Additional Information

Official title Dynamic Computational Modeling of Obstructive Sleep Apnea in Down Syndrome
Principal investigator Raouf Amin, MD
Description This is a proof-of-concept study to determine if a dynamic computational model can be used to predict surgical outcomes. If the results from the study are positive, they can be used to help design a larger subsequent study. The purpose of this research is to develop a computational model that simulates OSA and different surgical treatments for OSA in children and young adults with DS. Thus, the only population that will be studied is children and young adults with DS who have persistent OSA despite having previously undergone T&A. Obstructive sleep apnea (OSA) occurs in 50-100% of patients with Down syndrome (DS) and can significantly cause and exacerbate medical problems in these patients. Current surgical management of children with DS is imperfect. There are variable surgical success rates for both first line surgery of palatine tonsillectomy and adenoidectomy (T&A) as well as secondary surgeries performed if and when T&A fails. There is a critical need for a diagnostic modality that takes into account airway anatomy, tissue compliance, and collapsibility to be able to predict surgical outcome and improve surgical planning in these patients. Our central hypothesis is that upper airway flow-structure interaction (FSI) modeling using three-dimensional (3-D) computational simulations from dynamic magnetic resonance imaging (MRI or MR) data can be used to predict surgical outcomes for children with DS who have OSA despite previous T&A. The long-term goal is to improve surgical outcome of children with Down syndrome and OSA by creating an accurate FSI predictive model. Such a diagnostic tool would help tailor surgical procedures to be more effective as well as identify and avoid unnecessary or unhelpful surgical procedures. These created models can in future be adjusted and applied to other populations with OSA. Our specific aims include: 1) In children with Down syndrome and persistent OSA despite previous T&A, to collect data characterizing upper airway anatomy, tissue compliance, and collapsibility; 2) to generate and validate individualized dynamic FSI models for each child and 3) to use the validated dynamic computational models to predict the success of surgical treatment on children with Down syndrome who have persistent OSA despite previous T&A. This work is innovative as it uses dynamic rather than static MR imaging data and applies a unique computational model that accurately captures the unsteadiness of the flow and accounts for the interaction between the airflow and the surrounding airway flexible structures. Research components will involve two parts of the project. The first will be the generation, validation and use of computational models from MRI data. The second is the measure of critical closing pressure (Pcrit) on DS subjects who are at least three months post T&A, have OSA and are being evaluated for possible additional airway surgery. The measurement of Pcrit will be done during the research PSG (in the Sleep Center) and during the clinical sleep MRI (in the MRI suite). Pcrit measurements will be acquired with the use of a Continuous Positive Air Pressure (CPAP) mask during sleep. Additionally, to measure improvement in OSA based on quality of life (QOL) and sleep, the Obstructive Sleep Apnea questionnaire (OSA18) will be administered both preoperatively and postoperatively.
Trial information was received from ClinicalTrials.gov and was last updated in April 2016.
Information provided to ClinicalTrials.gov by Children's Hospital Medical Center, Cincinnati.